7 = 3 + □
12. Look at this pattern. One triangle equals three circles. Two triangles equal six circles.

If there are five triangles, how many circles will there be?
18. What numbers could go on the red and blue lines that would balance the scale?

Acceptable values:

Any two numbers that result in the sides having equal totals.

For example:
- 4 and 3
- 5 and 9
- 6 and 15
- 7 and 21, etc.
23. Look at the pattern of numbers. Each number that went in the machine is changed in the same way when it comes out.

If eight comes out, what number went in?
\[y = 3 - x \]
33. Which equation shows the relationship between x and y for the complete table?

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td>15</td>
<td>32</td>
</tr>
</tbody>
</table>

- $y = 3x - 1$
- $y = 2x - 1$
- $y = 2x + 2$
- $y = 2x + 6$

Correct Response: $y = 2x + 2$
Here are the first three figures in a pattern.

Which expression would you use to find the number of squares in the n^{th} figure of this pattern?

$2n + 2$
Correct Response

36. Which of the bottom expressions represents the expression in the box when factored completely?

2a(4b + 3c)