Psychometrics is the study of the measurement of human behavior, concerned with constructing reliable and valid instruments, as well as standardized procedures for measurement. This overview of basic psychometric principles is meant to help you evaluate the quality of the standardized assessment tools you use in your practice.

What distinguishes a standardized assessment from a nonstandardized assessment?

Standardized test
- Defined structures for administering and scoring that are followed in the same way by every professional who uses the test
- Structured procedures for interpreting results usually involving comparing a client’s score to the scores of a representative sample of people with similar characteristics (age, sex, etc.)
- Data have been collected on large numbers of subjects and a set of structured rules for administration and scoring were used
- Data determines the average score (mean) and the standard deviation, which the clinician then uses to benchmark the performance of the client tested

Nonstandardized test
Nonstandardized tests are usually created and shared by a clinician because no standardized tests exist for what they need to assess. Clinician-created measures are a step toward creating a standardized test because they measure constructs that are clinically meaningful. However, problems can occur when:
- They do not have data from a large number of subjects who were tested and whose performance was scored in exactly the same way by each clinician, according to a structured set of rules
- There is no scientifically supported basis for what constitutes a good or poor score, and other clinicians administer the same test, but score it based on their own criteria
- No data has been collected to verify the appropriateness of the administration procedures, the test items, and the scoring
Have you ever been in a situation in which two people have asked a very similar question of the same person, but were given different responses? Perhaps the two people were asking essentially the same question in slightly different ways or in different contexts. The exact wording of a question or the order in which questions are asked can influence the response. Psychometricians call these phenomena item-context effects. Psychometricians have also shown that in a testing situation, the relationship between the examiner and examinee can influence the level of effort the examinee puts into the test (an effect called motivation). To administer standardized assessments, examiners are trained to ask each client identical questions in a specific order and with a neutral tone to avoid inadvertently influencing the response. Examiners are trained to score responses in a uniform way so that one examiner does not rate a particular response as within normal limits while another examiner rates the very same response as outside of normal limits. This is important because many tests elicit verbal responses from examinees and have to be judged for accuracy. Standardized scoring rules give examiners a common set of rules so that they can judge and score responses the same way.

Why is standardized assessment important?

Have you ever been in a situation in which two people have asked a very similar question of the same person, but were given different responses? Perhaps the two people were asking essentially the same question in slightly different ways or in different contexts. The exact wording of a question or the order in which questions are asked can influence the response. Psychometricians call these phenomena item-context effects. Psychometricians have also shown that in a testing situation, the relationship between the examiner and examinee can influence the level of effort the examinee puts into the test (an effect called motivation). To administer standardized assessments, examiners are trained to ask each client identical questions in a specific order and with a neutral tone to avoid inadvertently influencing the response. Examiners are trained to score responses in a uniform way so that one examiner does not rate a particular response as within normal limits while another examiner rates the very same response as outside of normal limits. This is important because many tests elicit verbal responses from examinees and have to be judged for accuracy. Standardized scoring rules give examiners a common set of rules so that they can judge and score responses the same way.

7 reasons why standardized tests are an important part of clinical assessment practices

1. Help you gather and interpret data in a standard way
2. Confirm your clinical judgment
3. Support requests for services or reimbursement
4. Identify patterns of strengths and weaknesses to help guide the development of an appropriate intervention and treatment plan
5. Measure treatment outcomes
6. Provide a consistent means to document patient progress
7. Gather a body of evidence that can be disseminated as a set of best practice recommendations

How are test scores useful for outcomes-based practice?

Outcomes measurement can inform and improve your practice. Knowing the location of a person’s score on the normal curve enables you to determine his or her unique starting point prior to therapy. Following a course of treatment, the client can be retested. If the starting point was below average, and the retest score is in the average range, then there is clear documentation of a positive outcome. However, if the second score is within the standard error of measurement of the first score, then there is no clear evidence of treatment effectiveness. Assuming the length of treatment was adequate and applied properly, this would lead the outcomes-based therapist to consider another treatment.
Types of scores in standardized testing

Raw score.
The number of items answered correctly in each subtest is called the subtest raw score. The raw score provides very little information to the clinician—you can only tell that the examinee got a few of the items correct or many of the items correct. This provides no information about how the score compares with scores of other examinees the same age. Raw scores are almost always converted into a standard score using a table the psychometrician created from all the data collected during standardization.

Standard score.
A standard score is interpretable because it references an examinee's performance relative to the standardization sample. “Standard scores” are standard because each raw score has been transformed according to its position in the normal curve so that the mean (score) and the standard deviation (SD) are predetermined values (e.g., mean of 100 and SD of 15). Transforming raw scores to predetermined values enables interpretation of the scores based on a normal distribution (normal curve).

T score.
The T score applies a score of 50 points to the raw score mean.

Percentile ranks.
Percentile ranks are also a type of score commonly used to interpret test results, and link directly to the standard scores based on the normal curve. A percentile rank indicates the percentage of people who obtained that score or a lower one. So, a percentile rank of 30 indicates that 30% of individuals in the standardization sample obtained that score or lower. Similarly, a percentile rank of 30 indicates that 70% of individuals in the standardization sample scored higher than that score.

Why must I convert the number of correct responses (raw score) into another score?

Raw scores need to be transformed into standard scores so that you can compare your client's performance to the performances of other examinees of the same age or grade level. For example, say you have tested a second-grade boy named Jamal and administered all the test items precisely according to the test directions, in prescribed item order, and have followed the start/stop rules and scoring directions exactly. Jamal gets 32 items correct (i.e., a raw score of 32). How do you know if this score is high, low, or average? First, you would want to know the average score for second-graders (children Jamal's age). If the average (or mean) score for second graders is 40 points, you know that Jamal's score is lower than average, but you still need to ask, "Is it very low or just a little bit low?" To answer this question, psychometricians use the test's standard deviation. The standard deviation is derived from the test's normative data, using a complex statistical formula. It basically tells us how much variability there is across the scores of the subjects tested in the normative sample.

Let's say the standard deviation of this test is 4 points. A raw score of 36 would be one standard deviation below the mean, which is two standard deviations below the mean, is very low. If the standard deviation of the test was 10 points, then we would say that Jamal's score of 32 is less than one standard deviation below the mean—which is not very low.

Psychometricians develop norms tables so that you can convert each raw score (i.e., number of items correct) into a standard score for every age or grade covered by the test. When you look up your client's raw score in the norms table to find the standard score, all of these statistical adjustments have already been taken into account.
How do standard scores relate to the normal curve?

Standard scores are “standard” because the normative data (the original distribution of raw scores on which they are based) has been transformed to produce a normal curve (a standard distribution having a specific mean and standard deviation). Figure 1 shows the normal curve and its relationship to standard scores. As shown, the mean is the 50th percentile. This means that 50% of the normative sample obtained this score or lower. One and two standard deviations above the mean are the 84th and 98th percentiles, respectively. One and two standard deviations below the mean are the 16th and 2nd percentiles. While one standard deviation below the mean may not sound very low, it actually means that this client’s score is better than only 16% of all of the individuals at his or her age or grade.

Standard scores are assigned to all raw scores based on the standard deviation, but there are many different types of standard scores. Perhaps the most popular type of standard score is a metric where the mean is 100 and the standard deviation is 15. In the example of Jamal, the raw score mean was 40 points and the raw score standard deviation was 4 points. Jamal’s obtained raw score of 32 is two standard deviations below the mean at the 2nd percentile, so it would be assigned a standard score of 70. A standard score of 70 means the same thing for all tests normed using this 100/15 metric. In this way, standardized tests make it easier for you to interpret scores on different tests and to compare scores across tests.

Another popular standard score metric is the T score. In this system the mean is always set to T 50, and the standard deviation is always 10 T score points. So, T 40 and T 60 are one standard deviation below and above the mean, respectively. If Jamal’s raw score had been transformed to a T score metric, it would be T 30, which has the same meaning as a standard score of 70 (i.e., two standard deviations below the mean at the 2nd percentile).
For normally distributed constructs, percentiles and standard deviations line as shown in Figure 1 (i.e., one standard deviation below the mean is the 16th percentile). However, keep in mind that not all constructs of clinical interest are normally distributed in the population. When a construct is distributed in a way that the scores pile up on one end of the scale and taper off gradually at the other end, the distribution is called skewed. These distributions can be either positively or negatively skewed. A negatively skewed distribution might be obtained when measuring a construct that most subjects of one age can easily perform and only very few cannot. For example, a test of phonological awareness for 8-year-olds might be negatively skewed because most 8-year-olds can easily perform these tasks, and only very few cannot. A positively skewed distribution may be obtained when measuring a construct that most individuals cannot perform and only a few can. For example, a test of phonological awareness for 3-year-olds may be positively skewed because most cannot perform these tasks, but a few can. In skewed distributions, the percentiles and standard deviation units do not line up the same way as the normal curve. They vary to the extent that the distribution is skewed.

For example, a test of phonological awareness for 8-year-olds might be negatively skewed because most 8-year-olds can easily perform these tasks, and only very few cannot.
Why do many tests have basal and ceiling rules?

Many tests are designed for assessing clients across a wide range of ages and abilities; therefore, not all test items are necessary or appropriate for every client. In most cases, the test items are ordered from easiest to hardest. **Basal rules** enable you to establish where to start the test so that you do not need to administer every item. For example, if you are testing a 6-year-old child for language development, the test developers might have you start the test with items appropriate for 5½-year-olds just to be sure the child understands the task and to give him or her some practice with the items. You would not need to administer items intended for 3- or 4-year-olds unless the child had trouble responding to items designed for 5-year-olds. Typically, the **start point** in any test, subtest, or series of items is set at a level where 90% or more of all children that age have responded to the earlier items correctly. This helps reduce testing time and ensures that you administer only the items appropriate for each client. **Ceiling rules** enable you to know when to stop testing because you have exceeded the child’s ability to respond correctly. Psychometricians have analyzed the standardization data to determine when you can be sure that if you administer another item the child will very likely get it wrong. Usually, the **discontinue rule** is set so that after a certain number of items are answered incorrectly there is less than a 10% chance that the examinee will respond to any of the remaining items correctly. This reduces testing time, but equally importantly, it prevents frustrating the examinee by administering many items that he or she cannot respond to correctly.

What are confidence intervals, and why should I use them?

The very high degree of precision and standard procedures used in administering and scoring standardized, norm-referenced tests may make you think that you can be 100% confident in the exact score obtained every time you administer the test. Unfortunately, because we are measuring human behavior and not a physical characteristic (e.g., height or weight), there is always some measurement error inherent in all clinical tests. Sources of measurement error include fluctuations in human performance over time related to health or fatigue, lack of internal consistency within a set of questions, or even differences in rapport between the examiner and examinee.

For all these reasons, the client's true score may be slightly higher or lower than the specific score obtained. It is best to think of a range of scores that most likely describe your client's performance, rather than a single point score. The **confidence interval** is a range of scores around a client's obtained score that is sure to include the client's true score with 90% or 95% likelihood. Many tests report **critical values** that may be used to build a confidence interval around each client's standard score, such as plus or minus 5 points. Confidence intervals are derived from the **standard error of measurement.**
What is standard error of measurement and why should I be concerned about it?

The **standard error of measurement (SEM)** is an estimate of the amount of measurement error in a test, which is different for every test. Conceptually, the **SEM** is the reverse of reliability—the greater the reliability of a test, the smaller the standard error of measurement.

You should be concerned about standard errors of measurement because you can have more confidence in the accuracy of a test score when the reliability is high and the standard error of measurement is small. Psychometricians use the **SEM** to create the confidence interval. The higher the reliability, the smaller the **SEM** and the narrower the confidence interval. A narrower confidence interval means you have a more precise score. We recommend that practitioners take measurement error into account when interpreting test scores by using confidence intervals. Some tests have confidence intervals built into the norms tables.

How do I determine if a test has “good” norms?

Large normative sample

The accuracy of any standard score depends on the accuracy of the raw score mean and standard deviation obtained from the normative sample used to create the transformations to standard scores. The normative sample must be large enough to provide stable estimates of the population mean score and standard deviation. Very small normative samples may not have accurate raw score means and standard deviations because too much depends on the performance of the few subjects tested. The larger the sample, the more confidence you can have that a few errant subjects (referred to by psychometricians as outliers) did not have undue influence on the raw score mean and standard deviation. We can then say that the raw score means and standard deviations obtained from the normative data are stable.

Sample representation

There is more to quality norms then the size of the sample. The subjects in the sample must be representative of the types of clients with whom you use the test. Representation, however, is sometimes misunderstood. A test of early cognitive, motor, and language development for infants and toddlers, for instance, does not have to include developmentally delayed or at-risk subjects in the normative sample. The performance of delayed or at-risk children might pull the mean lower and the sample would no longer be representative of normal cognitive, motor, or language development.

Other factors known from previous research to affect performance on the task of interest should also be represented in the normative sample. For example, it is known that mothers with less education tend to provide less than average language stimulation to their developing children and the lack of early language stimulation has a substantial impact on the child’s cognitive and language development. When creating a test of early development, it would be important to ensure that children from different parent-education backgrounds are represented in approximately the same proportions as they are found in the general population. It is incumbent upon the test developer to understand what factors influence scores on the construct being measured and ensure proper representation of those factors in the normative sample.

Age of normative sample

Psychometricians must also be concerned with how long ago the normative sample was collected. Norms that were collected many years ago may no longer fairly represent today’s children or the current generation of adults. In state-mandated achievement testing, there is a requirement to update norms every 7 years. In the area of cognitive assessment, researchers have shown that norms tend to shift approximately 3 to 4 points every 10 years. Cognitive ability test scores typically improve across generations due to societal improvements in neonatal care, well-baby checks, nutrition, education, etc., so the norms from 10 years ago may no longer apply. Less is known about changes in language development or behavioral standards across generations, but the older the norms, the more concern psychometricians have about their validity today.
In general, reliability refers to the dependability of a test over time. Actually, there are several different types of reliability and each type estimates a different source of possible measurement error. The measures of reliability all range between 0 and .99.

1. **Internal consistency reliability**
 This measures the extent to which all the items in a test measure the same construct. To calculate internal consistency reliability, psychometricians use various formulas such as split-half reliability, or the *coefficient alpha* (also called Cronbach’s Alpha). All of these formulas are based on some way of calculating the extent to which the items in a test correlate with each other. The higher the correlation between items, the more we can assume that all the items measure the same thing. So, this type of reliability estimates measurement error based on inconsistency within the item set. For test batteries that include multiple subtests, this should be calculated separately for each subtest.

2. **Test-retest reliability**
 To estimate this type of reliability, the same test is administered twice to the same examinee, with a specific interval between the two administrations. Scores from the two test administrations are compared to see how highly they correlate and how much change there is between the scores in the two testing sessions. This type of reliability estimates measurement error from changes in human performance over time and is sometimes referred to as the *stability coefficient*.

Types of reliability

In general, reliability refers to the dependability of a test over time. Actually, there are several different types of reliability and each type estimates a different source of possible measurement error. The measures of reliability all range between 0 and .99.

1. **Internal consistency reliability**
 This measures the extent to which all the items in a test measure the same construct. To calculate internal consistency reliability, psychometricians use various formulas such as split-half reliability, or the *coefficient alpha* (also called Cronbach’s Alpha). All of these formulas are based on some way of calculating the extent to which the items in a test correlate with each other. The higher the correlation between items, the more we can assume that all the items measure the same thing. So, this type of reliability estimates measurement error based on inconsistency within the item set. For test batteries that include multiple subtests, this should be calculated separately for each subtest.

2. **Test-retest reliability**
 To estimate this type of reliability, the same test is administered twice to the same examinee, with a specific interval between the two administrations. Scores from the two test administrations are compared to see how highly they correlate and how much change there is between the scores in the two testing sessions. This type of reliability estimates measurement error from changes in human performance over time and is sometimes referred to as the *stability coefficient*.

What you need to know about validity

Though internal consistency reliability is a way to determine if all of the items in a test measure the same thing, other information is collected to provide evidence that the items measure the right thing. In other words, does a test of verbal intelligence actually measure verbal intelligence or is it really measuring language proficiency? To answer this question, one might design a study to show that a new verbal intelligence test correlates highly with other established tests of verbal intelligence, but not as highly with tests of language development. This type of evidence of validity is called *concurrent validity* because different tests are given at the same time and the relationship between their scores is compared. If a new verbal test correlated highly with another test of verbal intelligence, this would be called evidence of *convergent validity* because the new test scores converge with scores from a known test of the same construct. If the new verbal test did not correlate as highly with a test of language proficiency, this would be evidence of *divergent validity* because the new test scores diverge with scores from a test which it is not supposed to relate to as highly. This shows that the two tests measure somewhat different constructs.

Many professionals ask us, “What is the validity coefficient for this test?” This is the wrong question to ask because validity is not a single number. It is a collection of evidence that supports the hypothesis that the test measures what it is supposed to measure. Some professionals ask, “Is this test valid?” Tests are not valid in general, but they are valid for specific purposes. A test of language development may be valid in assessing language development, for example, but not for assessing specific language disorders (e.g., pragmatic language disorder). So, the question should be, “Is this test valid for the purpose for which I intend to use it?” It is important to be clear about how you intend to use a test and then look for evidence of validity to support that use.
Clinical validity refers to how the test performs in specific clinical populations. A test of working memory, for example, might be expected to show much lower mean scores in a clinical sample of subjects known to have working memory disorder as compared to a nonclinical sample. (Nonclinical simply means normal subjects.) In these studies, it is important that the clinical and nonclinical samples are matched according to other characteristics that may influence scores on the test, such as maternal education and age. In this way, you can be more certain that any differences observed between the clinical and nonclinical groups are truly due to the clinical disorder and not to other factors that were uncontrolled in the study because they are different between the two groups.

Another concept related to clinical validity is statistical significance. If a finding is statistically significant, it means that you can probably repeat the finding if you conduct the study again. It is important for the score difference between the clinical and nonclinical groups to be statistically significant. It is even more important that the size of the difference is large enough to be clinically meaningful. Sometimes a difference of only a couple of points can be statistically significant (i.e., repeatable), but the difference may not be large enough to be clinically useful.

To determine how meaningful the difference is, divide the difference by the standard deviation. Now you have a rough estimate of the effect size. Effect sizes (also called the standard difference) are often reported in the Examiner’s or Technical Manual in a table, comparing a particular clinical group to a typically developing matched sample. Effect sizes of .20 are considered small, but perhaps still meaningful, depending on the purpose. Effect sizes of .50 and .80 are considered medium and large, respectively.

Sometimes a test has a cut score (or cut-off score) to determine if the client is at risk and should be referred for more in-depth testing or has a particular disorder. So, in a test of depression, for example, one might say that any client with a score more than two standard deviations below the mean (i.e., 70) is classified as having depression, and any subject who scores above 70 is classified as nonclinical. We want to see how well this cut score differentiates between the clinical and nonclinical samples. As shown in Figure 3, subjects in the known clinical sample with scores below 70 are considered true positives because they are correctly classified as having the disorder. Subjects in the nonclinical sample with scores of 70 or higher are considered true negatives as they are correctly classified as not having the disorder.

Subjects in the known clinical sample with scores of 70 or higher are called false negatives because they have been classified as not having the disorder when they do have it. Those in the nonclinical sample with scores below 70 are called false positives because they have been incorrectly classified as having the disorder. False positives and negatives are always in a delicate balance, depending on where the cut score is set and the correct cut score depends on the purpose of testing. If the cut score is lowered, the percentage of false negatives increases and the percentage of false positives decreases. This may be appropriate in situations in which you want to be sure that you do not incorrectly label someone as having the disorder. If the cut score is raised, the percentage of false positives increase and the percentage of false negatives decrease. This is may be appropriate in situations when it is important to identify everyone who might have the disorder and incorrectly identifying a person does not have harmful consequences.

Sensitivity and Specificity

<table>
<thead>
<tr>
<th></th>
<th>< 70</th>
<th>≥ 70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical</td>
<td>True positive</td>
<td>False negative</td>
</tr>
<tr>
<td>Non-clinical</td>
<td>False positive</td>
<td>True negative</td>
</tr>
</tbody>
</table>

Clinical validity refers to how the test performs in specific clinical populations.
Some tests with well-developed cut scores do not require norms. This may be the case when the purpose of the test is to classify subjects as belonging to one or another group, but not to rate the severity of a disorder.

Test developers and researchers sometimes conduct studies with subjects already identified as having or not having a disorder. These studies are designed to evaluate the performance of a test. In real practice, you do not know ahead of time if the person you are testing has the disorder—after all, that is why you are testing. To determine how likely you are to correctly classify someone as having the disorder in real practice, divide the number of true positive cases in the sensitivity/specificity table by the sum of the number of true positive and false positives cases. This will give you an estimate of the positive predictive power of the test in applied situations. Even this method may have problems, however, if the percentage of clients in your practice with that disorder is much higher than in the study.

Conclusion

Standardized clinical assessments are extremely useful scientific instruments that inform, but do not replace, professional judgement. They are created for use and interpretation by highly trained professionals who also take into account the client's history and other test scores. We hope that this brief paper gives you an appreciation for the science behind the tests you use in practice and, more importantly, the basic knowledge to evaluate the quality of the testing instruments you choose to use.